
Finding Locally Optimal, Collision-Free
Trajectories with Sequential Convex Optimization

John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow and Pieter Abbeel

Pranay Pasula, Eugene Vinitsky

Finding Locally Optimal, Collision-Free
Trajectories with Sequential Convex Optimization

The world’s fastest introduction to penalty
methods and collision checking

Pranay Pasula, Eugene Vinitsky

Problem

Problem Statement

● Given object A and obstacles
● Find a trajectory that takes object A from to with

○ Minimal computation time
○ Minimal likelihood of collision
○ Minimal cost

Figure from Xanthidis et al. 2019 “Navigation in the
Presence of…”

Key Insights
● Mesh methods are really effective
● Convex-convex collision checking is “fast”
● Convex collision checking can be turned into a constraint
● Trust region methods can be used to efficiently solve constrained optimization

problems

Progress
● Fast signed distance checking
● Collision constraints
● Solving the constrained problem

Overview: Collision avoidance

Discrete-time
● Signed distance (SD) between objects
● SD constraints and penalty formulation
● Linearizing SD to enable optimization

Continuous-time
● Case 1: Translation only
● Case 2: Translation + rotation

Preliminaries

are labels for rigid objects/obstacles

are sets of points occupied by

Penalizing collisions ideally
Collision penalty based on minimum translation distance between objects

Penalizing collisions (kind of) practically

No collision:

Collision:
No room for error!

Introduce safety margin

But where do signed distances come from?

GJK
Two objects intersect if their
Minkowski difference contains the
origin

Source: “Real Time Collision Detection”

GJK basic idea: simple
● Form Minkowski

difference
● Iteratively find

closest points
● Either gives

closure or
distance

● NOT THE
FASTEST WAY

Source: “Real Time Collision Detection”

Expanding Polytope Method
● Pick a polytope
● Find closest point in

polytope
● If point on edge, done
● Else, expand polytope

to include support
vector

Source:
https://www.youtube.com/watch?v=6rgiPrzqt9w

Expanding Polytope Method
● Pick a polytope
● Find closest point in

polytope
● If point on edge,

done
● Else, expand polytope

to include support
vector

Source:
https://www.youtube.com/watch?v=6rgiPrzqt9w

Expanding Polytope Method
● Pick a polytope
● Find closest point in

polytope
● If point on edge, done
● Else, expand

polytope to include
support vector

Source:
https://www.youtube.com/watch?v=6rgiPrzqt9w

Expanding Polytope Method
● Pick a polytope
● Find closest point in

polytope
● If point on edge,

done
● Else, expand polytope

to include support
vector

Source:
https://www.youtube.com/watch?v=6rgiPrzqt9w

Signed distance constraints and reformulation

 : set of robot links

 : set of obstacles

What do we want?

Reformulate for our method

Penalizing collisions practically

Enumerating over all combinations is
prohibitive

Introduce

Compute cost only for pairs with

We have

Progress
● Fast signed distance checking
● Collision constraints
● Solving the constrained problem

Making signed distance work for us
We have

But is non-linear!

1. Reformulate as maximin problem

2. Approx with first-order Taylor expansion wrt

3. Replace corresponding cost term with approx

4. Repeat for all pairs with distance

Continuous-Time Collision Avoidance (Translation only)

Continuous-Time Collision Avoidance (Translation + Rotation)

Recap: Collision avoidance

Discrete-time
● Signed distance (SD) between objects
● SD constraints and penalty formulation
● Linearizing SD to enable optimization

Continuous-time
● Case 1: Translation only
● Case 2: Translation + rotation

Progress
● Fast signed distance checking
● Collision constraint
● Solving the constrained problem

Penalty Optimization
● Start with a constrained problem

● Move the constraints into the cost with a penalty coefficient

● Optimize away

Penalty Optimization

● But wait, won’t this
change the optimum?

Penalty Optimization
But wait, won’t this change the optimum? Yep!

Penalty Optimization

If you just make the penalty large enough, we’ll find the constrained local
minimum1

Note, this isn’t necessarily true if we used quadratic penalties

Nocedal and Wright1

Sequential Quadratic Optimization w/ Trust Region
● Non-convex problem

Sequential Quadratic Optimization w/ Trust Region
● Expand to second order around your point

Sequential Quadratic Optimization w/ Trust Region
● Apply a trust region

Sequential Quadratic Optimization w/ Trust Region
● Apply a quadratic program

solver like IPOPT

Trust Region Scaling
● Apply a quadratic program

solver like IPOPT
● Improved on the true problem?

● Didn’t?

Penalty Scaling
● Constraints unsatisfied?

Progress
● Fast signed distance checking
● Collision constraints
● Solving the constrained problem

What’ve we got
● A way to compute signed distance

constraints
● A way to solve the optimization

formula

CHOMP V. TrajOpt

CHOMP
● Projected gradient

descent
● Distance fields

TrajOpt
● Sequential

Quadratic
Programs

● Convex-Convex
collision checking

What does trajopt help with? CHOMP

What does trajopt help with? CHOMP

Conflicting costs on
body points

What does trajopt help with? CHOMP

Just compute
minimal translation

What does trajopt help with? CHOMP

Fast distance
checking using

spheres

What does trajopt help with? CHOMP

Spheres
over-approximate

convex objects

What does trajopt help with? CHOMP

Don’t need to
approximate for
convex objects

Comparison with other motion planning algorithms

198 arm planning problems with PR2 (7 DOF)

96 full body planning problems with PR2 (18 DOF)

Pros + Cons
+ Typically returns high quality path
+ Works in high dimensions
+ Faster than comparable optimizers
+ Highly customizable
- Highly customizable

- Must specific objective function, gradient descent step size, D_safe, etc.

- Not complete
- Not optimal
- Neglects structure of the problem during optimization
- Initialization dependent
- More complicated than many sampling based or graph search based methods

Failure Modes

Epic 2013 resolution videos

http://www.youtube.com/watch?v=twp_VDPSvuI&t=10

Epic 2013 resolution videos

http://www.youtube.com/watch?v=AwteAfCSCMA&t=33

Points for discussion
● Other optimization schemes?
● Ideas for tackling failure modes
● GPU acceleration
● Where does the speedup come from?

How to further speed up?

