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Problem



Problem Statement

● Given object A and obstacles 
● Find a trajectory     that takes object A from           to          with

○ Minimal computation time 
○ Minimal likelihood of collision
○ Minimal cost

Figure from Xanthidis et al. 2019 “Navigation in the 
Presence of…”



Key Insights
● Mesh methods are really effective
● Convex-convex collision checking is “fast”
● Convex collision checking can be turned into a constraint
● Trust region methods can be used to efficiently solve constrained optimization 

problems



Progress
● Fast signed distance checking
● Collision constraints
● Solving the constrained problem



Overview: Collision avoidance

Discrete-time
● Signed distance (SD) between objects
● SD constraints and penalty formulation
● Linearizing SD to enable optimization

Continuous-time
● Case 1: Translation only
● Case 2: Translation + rotation



Preliminaries

are labels for rigid objects/obstacles

are sets of points occupied by 



Penalizing collisions ideally
Collision penalty based on minimum translation distance          between objects



Penalizing collisions (kind of) practically

No collision:

Collision: 
No room for error!

Introduce safety margin



But where do signed distances come from?



GJK
Two objects intersect if their 
Minkowski difference contains the 
origin

Source: “Real Time Collision Detection”



GJK basic idea: simple
● Form Minkowski 

difference
● Iteratively find 

closest points
● Either gives 

closure or 
distance

● NOT THE 
FASTEST WAY

Source: “Real Time Collision Detection”



Expanding Polytope Method
● Pick a polytope
● Find closest point in 

polytope
● If point on edge, done
● Else, expand polytope 

to include support 
vector

Source: 
https://www.youtube.com/watch?v=6rgiPrzqt9w
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Signed distance constraints and reformulation

        :   set of robot links

    :   set of obstacles

What do we want?

Reformulate for our method



Penalizing collisions practically

Enumerating over all combinations is 
prohibitive

Introduce

Compute cost only for pairs with

We have



Progress
● Fast signed distance checking
● Collision constraints
● Solving the constrained problem



Making signed distance work for us
We have

But                    is non-linear!

1. Reformulate                   as maximin problem

2. Approx with first-order Taylor expansion wrt

3. Replace corresponding cost term with approx

4. Repeat for all pairs with distance 



Continuous-Time Collision Avoidance (Translation only)



Continuous-Time Collision Avoidance (Translation + Rotation)



Recap: Collision avoidance

Discrete-time
● Signed distance (SD) between objects
● SD constraints and penalty formulation
● Linearizing SD to enable optimization

Continuous-time
● Case 1: Translation only
● Case 2: Translation + rotation



Progress
● Fast signed distance checking
● Collision constraint
● Solving the constrained problem



Penalty Optimization
● Start with a constrained problem

●  Move the constraints into the cost with a penalty coefficient

● Optimize away



Penalty Optimization

● But wait, won’t this 
change the optimum?



Penalty Optimization
But wait, won’t this change the optimum? Yep!



Penalty Optimization

If you just make the penalty large enough, we’ll find the constrained local 
minimum1

Note, this isn’t necessarily true if we used quadratic penalties

Nocedal and Wright1



Sequential Quadratic Optimization w/ Trust Region
● Non-convex problem



Sequential Quadratic Optimization w/ Trust Region
● Expand to second order around your point 



Sequential Quadratic Optimization w/ Trust Region
● Apply a trust region



Sequential Quadratic Optimization w/ Trust Region
● Apply a quadratic program 

solver like IPOPT



Trust Region Scaling
● Apply a quadratic program 

solver like IPOPT
● Improved on the true problem?

● Didn’t? 



Penalty Scaling
● Constraints unsatisfied?



Progress
● Fast signed distance checking
● Collision constraints
● Solving the constrained problem



What’ve we got
● A way to compute signed distance 

constraints
● A way to solve the optimization 

formula



CHOMP V. TrajOpt

CHOMP
● Projected gradient 

descent
● Distance fields

TrajOpt
● Sequential 

Quadratic 
Programs

● Convex-Convex 
collision checking



What does trajopt help with? CHOMP



What does trajopt help with? CHOMP

Conflicting costs on 
body points



What does trajopt help with? CHOMP

Just compute 
minimal translation



What does trajopt help with? CHOMP

Fast distance 
checking using 

spheres



What does trajopt help with? CHOMP

Spheres 
over-approximate 

convex objects



What does trajopt help with? CHOMP

Don’t need to 
approximate for 
convex objects



Comparison with other motion planning algorithms

198 arm planning problems with PR2 (7 DOF)

96 full body planning problems with PR2 (18 DOF)



Pros + Cons
+ Typically returns high quality path
+ Works in high dimensions
+ Faster than comparable optimizers
+ Highly customizable
- Highly customizable

- Must specific objective function, gradient descent step size, D_safe, etc.

- Not complete
- Not optimal
- Neglects structure of the problem during optimization
- Initialization dependent
- More complicated than many sampling based or graph search based methods



Failure Modes



Epic 2013 resolution videos

http://www.youtube.com/watch?v=twp_VDPSvuI&t=10


Epic 2013 resolution videos

http://www.youtube.com/watch?v=AwteAfCSCMA&t=33


Points for discussion
● Other optimization schemes?
● Ideas for tackling failure modes
● GPU acceleration
● Where does the speedup come from? 

How to further speed up?


