# Robust Detection of Deepfake Videos

Pranay Pasula, Ujjwal Singhania, Yijiu Zhong

Advisors: Dawn Song, Ruoxi Jia

### Motivation



Source: https://ai.facebook.com/blog/deepfake-detection-challenge/



### Deepfake Detection Challenge Dataset (DFDC)\*

- ~500GB (119,146 real/fake videos)
- Deepfakes created by multiple methods to test generalization





### **Optical Flow**

Optical flow denotes apparent motion of objects, surfaces and edges in a visual scene



### **Optical Flow Data Pipeline**



300 frames (1920 x 1080)



300 faces (250 x 250)



1 temporal face grid (875 x 375)



Dense optical flow between T and T + 1 frames



#### Is there a commonality between different deepfake generation techniques?



**Different Manipulation Techniques** 



**Common Blending Step** 

### **Face X-ray Detection**



### Face X-ray Data Generation Pipeline



### Face X-ray prediction results







Real image

Image blended using Gaussian blur

Image blended using unknown method

- Result is not ideal
  - Different blending methods
  - Resolution
- However, provides us insights about blending boundary.

### Face X-ray + Optical Flow



New Training Image:

- 14 face frames (upper row is time = t and bottom row is time = t + 1)
- 7 optical flow frames (between each t and t + 1 frame)
- **14 face x-ray frames** (one for each face frame)



### Face extraction, concatenation, and brightness adjustment







### Data augmentation



Original

HSV shift

JPEG compression

Elastic transform

Horizontal flip

Not shown: Gaussian blur and downscale + upscale



### EfficientNet performance vs SotA classifiers



19

### EfficientNet - compound scaling





### **Clipping predictions**



### Final predictions (without x-ray or optical flow)



- Accuracy: 0.89
- F1 Score: 0.90
- Fake Detection Rate: 0.98
- Real Detection Rate: 0.78

### Face X-ray + Optical Flow vs Optical Flow - Results

- Recall: 0.896
- Precision: 0.890
- F1 Score: 0.893
- Fake Detection Rate: 0.896
- Real Detection Rate: 0.535
- Accuracy: 0.827

- Recall: 0.86
- Precision: 0.90
- F1 Score: 0.88
- Fake Detection Rate: 0.86
- Real Detection Rate: 0.59





### Discussion

- Strong fake detection rate
  - Usually more important to detect deepfakes than to detect real videos
- Recurrent failure modes
  - Facial hair
  - Glasses
  - Multiple people
- Effect of image resolution on optical flow output and face x-ray
  - Tradeoff between performance and granularity of optical flow information
  - HRNet bad performance on low resolution grids

### **Future Work**

- Optical flow on x-ray images
- Sound as synergistic modality
- Explore better optical flow calculation
  - PWC-Net by Nvidia SoTA on Sintel final pass

### References

- Amerini, Irene, Leonardo Galteri, Roberto Caldelli, and Alberto Del Bimbo. "Deepfake Video Detection through Optical Flow based CNN." In *Proceedings of the IEEE International Conference on Computer Vision Workshops*, pp. 0-0. 2019.
- Li, Lingzhi, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. "Face X-ray for More General Face Forgery Detection." arXiv preprint arXiv:1912.13458(2019).
- Rossler, Andreas, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner. "Faceforensics++: Learning to detect manipulated facial images." In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1-11. 2019.
- Sun, Deqing, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 8934-8943. 2018.
- Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." *arXiv preprint arXiv:1905.11946* (2019).
- Wang, Jingdong, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu et al. "Deep high-resolution representation learning for visual recognition." *arXiv preprint arXiv:1908.07919* (2019).